3.61 \(\int \frac{x (A+B x^3)}{a+b x^3} \, dx\)

Optimal. Leaf size=150 \[ \frac{(A b-a B) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 \sqrt [3]{a} b^{5/3}}-\frac{(A b-a B) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{5/3}}-\frac{(A b-a B) \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt{3} \sqrt [3]{a} b^{5/3}}+\frac{B x^2}{2 b} \]

[Out]

(B*x^2)/(2*b) - ((A*b - a*B)*ArcTan[(a^(1/3) - 2*b^(1/3)*x)/(Sqrt[3]*a^(1/3))])/(Sqrt[3]*a^(1/3)*b^(5/3)) - ((
A*b - a*B)*Log[a^(1/3) + b^(1/3)*x])/(3*a^(1/3)*b^(5/3)) + ((A*b - a*B)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2
/3)*x^2])/(6*a^(1/3)*b^(5/3))

________________________________________________________________________________________

Rubi [A]  time = 0.0903092, antiderivative size = 150, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.389, Rules used = {459, 292, 31, 634, 617, 204, 628} \[ \frac{(A b-a B) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 \sqrt [3]{a} b^{5/3}}-\frac{(A b-a B) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{5/3}}-\frac{(A b-a B) \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt{3} \sqrt [3]{a} b^{5/3}}+\frac{B x^2}{2 b} \]

Antiderivative was successfully verified.

[In]

Int[(x*(A + B*x^3))/(a + b*x^3),x]

[Out]

(B*x^2)/(2*b) - ((A*b - a*B)*ArcTan[(a^(1/3) - 2*b^(1/3)*x)/(Sqrt[3]*a^(1/3))])/(Sqrt[3]*a^(1/3)*b^(5/3)) - ((
A*b - a*B)*Log[a^(1/3) + b^(1/3)*x])/(3*a^(1/3)*b^(5/3)) + ((A*b - a*B)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2
/3)*x^2])/(6*a^(1/3)*b^(5/3))

Rule 459

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(b*e*(m + n*(p + 1) + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 292

Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> -Dist[(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x \left (A+B x^3\right )}{a+b x^3} \, dx &=\frac{B x^2}{2 b}-\frac{(-2 A b+2 a B) \int \frac{x}{a+b x^3} \, dx}{2 b}\\ &=\frac{B x^2}{2 b}-\frac{(A b-a B) \int \frac{1}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{3 \sqrt [3]{a} b^{4/3}}+\frac{(A b-a B) \int \frac{\sqrt [3]{a}+\sqrt [3]{b} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{3 \sqrt [3]{a} b^{4/3}}\\ &=\frac{B x^2}{2 b}-\frac{(A b-a B) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{5/3}}+\frac{(A b-a B) \int \frac{-\sqrt [3]{a} \sqrt [3]{b}+2 b^{2/3} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{6 \sqrt [3]{a} b^{5/3}}+\frac{(A b-a B) \int \frac{1}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{2 b^{4/3}}\\ &=\frac{B x^2}{2 b}-\frac{(A b-a B) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{5/3}}+\frac{(A b-a B) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 \sqrt [3]{a} b^{5/3}}+\frac{(A b-a B) \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{\sqrt [3]{a} b^{5/3}}\\ &=\frac{B x^2}{2 b}-\frac{(A b-a B) \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt{3} \sqrt [3]{a} b^{5/3}}-\frac{(A b-a B) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{5/3}}+\frac{(A b-a B) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 \sqrt [3]{a} b^{5/3}}\\ \end{align*}

Mathematica [A]  time = 0.0482049, size = 152, normalized size = 1.01 \[ -\frac{(a B-A b) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 \sqrt [3]{a} b^{5/3}}+\frac{(a B-A b) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{5/3}}-\frac{(a B-A b) \tan ^{-1}\left (\frac{2 \sqrt [3]{b} x-\sqrt [3]{a}}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt{3} \sqrt [3]{a} b^{5/3}}+\frac{B x^2}{2 b} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(A + B*x^3))/(a + b*x^3),x]

[Out]

(B*x^2)/(2*b) - ((-(A*b) + a*B)*ArcTan[(-a^(1/3) + 2*b^(1/3)*x)/(Sqrt[3]*a^(1/3))])/(Sqrt[3]*a^(1/3)*b^(5/3))
+ ((-(A*b) + a*B)*Log[a^(1/3) + b^(1/3)*x])/(3*a^(1/3)*b^(5/3)) - ((-(A*b) + a*B)*Log[a^(2/3) - a^(1/3)*b^(1/3
)*x + b^(2/3)*x^2])/(6*a^(1/3)*b^(5/3))

________________________________________________________________________________________

Maple [A]  time = 0.001, size = 198, normalized size = 1.3 \begin{align*}{\frac{B{x}^{2}}{2\,b}}-{\frac{A}{3\,b}\ln \left ( x+\sqrt [3]{{\frac{a}{b}}} \right ){\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}+{\frac{Ba}{3\,{b}^{2}}\ln \left ( x+\sqrt [3]{{\frac{a}{b}}} \right ){\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}+{\frac{A}{6\,b}\ln \left ({x}^{2}-\sqrt [3]{{\frac{a}{b}}}x+ \left ({\frac{a}{b}} \right ) ^{{\frac{2}{3}}} \right ){\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}-{\frac{Ba}{6\,{b}^{2}}\ln \left ({x}^{2}-\sqrt [3]{{\frac{a}{b}}}x+ \left ({\frac{a}{b}} \right ) ^{{\frac{2}{3}}} \right ){\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}+{\frac{\sqrt{3}A}{3\,b}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{x{\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}-1 \right ) } \right ){\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}-{\frac{\sqrt{3}Ba}{3\,{b}^{2}}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{x{\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}-1 \right ) } \right ){\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(B*x^3+A)/(b*x^3+a),x)

[Out]

1/2*B*x^2/b-1/3/b/(a/b)^(1/3)*ln(x+(a/b)^(1/3))*A+1/3/b^2/(a/b)^(1/3)*ln(x+(a/b)^(1/3))*B*a+1/6/b/(a/b)^(1/3)*
ln(x^2-(a/b)^(1/3)*x+(a/b)^(2/3))*A-1/6/b^2/(a/b)^(1/3)*ln(x^2-(a/b)^(1/3)*x+(a/b)^(2/3))*B*a+1/3/b*3^(1/2)/(a
/b)^(1/3)*arctan(1/3*3^(1/2)*(2/(a/b)^(1/3)*x-1))*A-1/3/b^2*3^(1/2)/(a/b)^(1/3)*arctan(1/3*3^(1/2)*(2/(a/b)^(1
/3)*x-1))*B*a

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(B*x^3+A)/(b*x^3+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.52438, size = 895, normalized size = 5.97 \begin{align*} \left [\frac{3 \, B a b^{2} x^{2} - 3 \, \sqrt{\frac{1}{3}}{\left (B a^{2} b - A a b^{2}\right )} \sqrt{\frac{\left (-a b^{2}\right )^{\frac{1}{3}}}{a}} \log \left (\frac{2 \, b^{2} x^{3} - a b + 3 \, \sqrt{\frac{1}{3}}{\left (a b x + 2 \, \left (-a b^{2}\right )^{\frac{2}{3}} x^{2} + \left (-a b^{2}\right )^{\frac{1}{3}} a\right )} \sqrt{\frac{\left (-a b^{2}\right )^{\frac{1}{3}}}{a}} - 3 \, \left (-a b^{2}\right )^{\frac{2}{3}} x}{b x^{3} + a}\right ) - \left (-a b^{2}\right )^{\frac{2}{3}}{\left (B a - A b\right )} \log \left (b^{2} x^{2} + \left (-a b^{2}\right )^{\frac{1}{3}} b x + \left (-a b^{2}\right )^{\frac{2}{3}}\right ) + 2 \, \left (-a b^{2}\right )^{\frac{2}{3}}{\left (B a - A b\right )} \log \left (b x - \left (-a b^{2}\right )^{\frac{1}{3}}\right )}{6 \, a b^{3}}, \frac{3 \, B a b^{2} x^{2} - 6 \, \sqrt{\frac{1}{3}}{\left (B a^{2} b - A a b^{2}\right )} \sqrt{-\frac{\left (-a b^{2}\right )^{\frac{1}{3}}}{a}} \arctan \left (\frac{\sqrt{\frac{1}{3}}{\left (2 \, b x + \left (-a b^{2}\right )^{\frac{1}{3}}\right )} \sqrt{-\frac{\left (-a b^{2}\right )^{\frac{1}{3}}}{a}}}{b}\right ) - \left (-a b^{2}\right )^{\frac{2}{3}}{\left (B a - A b\right )} \log \left (b^{2} x^{2} + \left (-a b^{2}\right )^{\frac{1}{3}} b x + \left (-a b^{2}\right )^{\frac{2}{3}}\right ) + 2 \, \left (-a b^{2}\right )^{\frac{2}{3}}{\left (B a - A b\right )} \log \left (b x - \left (-a b^{2}\right )^{\frac{1}{3}}\right )}{6 \, a b^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(B*x^3+A)/(b*x^3+a),x, algorithm="fricas")

[Out]

[1/6*(3*B*a*b^2*x^2 - 3*sqrt(1/3)*(B*a^2*b - A*a*b^2)*sqrt((-a*b^2)^(1/3)/a)*log((2*b^2*x^3 - a*b + 3*sqrt(1/3
)*(a*b*x + 2*(-a*b^2)^(2/3)*x^2 + (-a*b^2)^(1/3)*a)*sqrt((-a*b^2)^(1/3)/a) - 3*(-a*b^2)^(2/3)*x)/(b*x^3 + a))
- (-a*b^2)^(2/3)*(B*a - A*b)*log(b^2*x^2 + (-a*b^2)^(1/3)*b*x + (-a*b^2)^(2/3)) + 2*(-a*b^2)^(2/3)*(B*a - A*b)
*log(b*x - (-a*b^2)^(1/3)))/(a*b^3), 1/6*(3*B*a*b^2*x^2 - 6*sqrt(1/3)*(B*a^2*b - A*a*b^2)*sqrt(-(-a*b^2)^(1/3)
/a)*arctan(sqrt(1/3)*(2*b*x + (-a*b^2)^(1/3))*sqrt(-(-a*b^2)^(1/3)/a)/b) - (-a*b^2)^(2/3)*(B*a - A*b)*log(b^2*
x^2 + (-a*b^2)^(1/3)*b*x + (-a*b^2)^(2/3)) + 2*(-a*b^2)^(2/3)*(B*a - A*b)*log(b*x - (-a*b^2)^(1/3)))/(a*b^3)]

________________________________________________________________________________________

Sympy [A]  time = 1.04161, size = 92, normalized size = 0.61 \begin{align*} \frac{B x^{2}}{2 b} + \operatorname{RootSum}{\left (27 t^{3} a b^{5} + A^{3} b^{3} - 3 A^{2} B a b^{2} + 3 A B^{2} a^{2} b - B^{3} a^{3}, \left ( t \mapsto t \log{\left (\frac{9 t^{2} a b^{3}}{A^{2} b^{2} - 2 A B a b + B^{2} a^{2}} + x \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(B*x**3+A)/(b*x**3+a),x)

[Out]

B*x**2/(2*b) + RootSum(27*_t**3*a*b**5 + A**3*b**3 - 3*A**2*B*a*b**2 + 3*A*B**2*a**2*b - B**3*a**3, Lambda(_t,
 _t*log(9*_t**2*a*b**3/(A**2*b**2 - 2*A*B*a*b + B**2*a**2) + x)))

________________________________________________________________________________________

Giac [A]  time = 1.12312, size = 247, normalized size = 1.65 \begin{align*} \frac{B x^{2}}{2 \, b} + \frac{{\left (B a b \left (-\frac{a}{b}\right )^{\frac{1}{3}} - A b^{2} \left (-\frac{a}{b}\right )^{\frac{1}{3}}\right )} \left (-\frac{a}{b}\right )^{\frac{1}{3}} \log \left ({\left | x - \left (-\frac{a}{b}\right )^{\frac{1}{3}} \right |}\right )}{3 \, a b^{2}} + \frac{\sqrt{3}{\left (\left (-a b^{2}\right )^{\frac{2}{3}} B a - \left (-a b^{2}\right )^{\frac{2}{3}} A b\right )} \arctan \left (\frac{\sqrt{3}{\left (2 \, x + \left (-\frac{a}{b}\right )^{\frac{1}{3}}\right )}}{3 \, \left (-\frac{a}{b}\right )^{\frac{1}{3}}}\right )}{3 \, a b^{3}} - \frac{{\left (\left (-a b^{2}\right )^{\frac{2}{3}} B a - \left (-a b^{2}\right )^{\frac{2}{3}} A b\right )} \log \left (x^{2} + x \left (-\frac{a}{b}\right )^{\frac{1}{3}} + \left (-\frac{a}{b}\right )^{\frac{2}{3}}\right )}{6 \, a b^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(B*x^3+A)/(b*x^3+a),x, algorithm="giac")

[Out]

1/2*B*x^2/b + 1/3*(B*a*b*(-a/b)^(1/3) - A*b^2*(-a/b)^(1/3))*(-a/b)^(1/3)*log(abs(x - (-a/b)^(1/3)))/(a*b^2) +
1/3*sqrt(3)*((-a*b^2)^(2/3)*B*a - (-a*b^2)^(2/3)*A*b)*arctan(1/3*sqrt(3)*(2*x + (-a/b)^(1/3))/(-a/b)^(1/3))/(a
*b^3) - 1/6*((-a*b^2)^(2/3)*B*a - (-a*b^2)^(2/3)*A*b)*log(x^2 + x*(-a/b)^(1/3) + (-a/b)^(2/3))/(a*b^3)